A Real Time Patient Monitoring System based on Artificial Neural Fuzzy Inference System (ANFIS)
نویسندگان
چکیده
Over the last few years there has been tremendous growth in the field of healthcare monitoring systems in hospitals and outside of it. Developing wireless health care monitoring devices employing various technologies has become a keen area of interest in India and as well as in other Nations. This proposed work aims to integrate artificial neural intelligence in domain of healthcare monitoring. Wireless body sensor devices have the ability to reach an advance level of human body monitoring utilizing various transmission and data analytics techniques. Implementation of Artificial Neural Fuzzy Inference Systems (ANFIS) would enable the system to work as a smart healthcare system that decides the priority by itself based on the collected psychological parameters from the sensor nodes. Proposed model describes an e-healthcare monitoring system developed for realizing integration of ANFIS in healthcare monitoring systems. The model consists of sensors to collect vital data from patient’s body which is then transmitted by Wi-Fi to a central HUB where fuzzy logic converts the raw data in linguistic variable which is trained in ANFIS to get the status of patient. The developed system provides the reliable, accurate and real-time accessible data of patients continuously and transmits the
منابع مشابه
Intelligent Health Evaluation Method of Slewing Bearing Adopting Multiple Types of Signals from Monitoring System
Slewing bearing, which is widely applied in tank, excavator and wind turbine, is a critical component of rotational machine. Standard procedure for bearing life calculation and condition assessment was established in general rolling bearings, nevertheless, relatively less literatures, in regard to the health condition assessment of slewing bearing, were published in past. Real time health condi...
متن کاملEvaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station
Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...
متن کاملAdaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis
The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...
متن کاملA COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement conten...
متن کاملApplication of Artificial Neural Network and Fuzzy Inference System in Prediction of Breaking Wave Characteristics
Wave height as well as water depth at the breaking point are two basic parameters which are necessary for studying coastal processes. In this study, the application of soft computing-based methods such as artificial neural network (ANN), fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS) and semi-empirical models for prediction of these parameters are investigated. Th...
متن کامل